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Abstract
We show there exists a closed locally symmetric manifold M modeled on SLn(R)/SO(n),
and a non-trivial homology class in degree dim(M) − rank(M) represented by a totally
geodesic submanifold that contains a circle factor. As a result, the comparison map ck :
Hk
b (M,R) → Hk(M,R) is not surjective in degree k = dim(M) − rank(M). This provides

a counterpart to a result of Lafont and Wang (J Eur Math Soc (JEMS) 21(2):381–403, 2019)
which states that ck is always surjective in degree k ≥ dim(M) − rank(M) + 2.

1 Introduction

Let M be a connected, closed, oriented topological manifold. For each singular homology
class α ∈ Hk(M,R), one can associate to it a semi-norm which measures how efficiently
α can be represented by a linear combination of simplices. More precisely, we define the
Gromov norm

||α||1 := inf

{
l∑

i=1

|ai | :
l∑

i=1

aiσi is a cycle representing α in Hk(M,R)

}
.

In particular, the Gromov norm of the fundamental class [M] is called the simplicial volume
of M , denoted by ||M ||.

One interesting aspect of this topological invariant is that it reflects certain geometric
properties of the underlyingmanifold. It is shown that the bounded cohomologyofM vanishes
if the fundamental group π1(M) is amenable [11], in which case the Gromov norm vanishes
in all degrees according to the duality principle. This includes, for example, positively curved
manifolds, flat manifolds, and most generally manifolds with nonnegative Ricci curvature.
On the other hand, for a negatively curved manifold, all non-trivial k-classes have positive
Gromov normwhen k ≥ 2 [12]. It remains amysterious question formanifolds of nonpositive
curvature whether the Gromov norm is positive or zero. Intuitively speaking, if the homology
class resembles more of a negatively curved feature, or that overall the negative curvature
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dominates the zero curvature, then the Gromov norm is positive. Some efforts have been
made towards this direction in [8, 9].

In the case of irreducible locally symmetric manifolds of noncompact type, it is shown
that any non-trivial k-class has positive Gromov norm when k ≥ dim(M) − rank(M) + 2
[5, 13, 14], and this has been generalized in [21]. All these results are based on the original
straightening method introduced in [18], which boil down to showing certain straightened
k-simplices have uniformly bounded volume. However, as noted in [14], this in general fails
when k ≤ dim(M) − rank(M) if M is modeled on SLn(R)/SO(n). This suggests that there
could be examples of nontrivial classes with zeroGromov norm in the corresponding degrees.
In the present paper, we give an explicit construction of a non-trivial homology class in degree
k = dim(M) − rank(M), which is represented by a submanifold with a circle factor.

Theorem 1.1 For every integer n ≥ 3, there exists a torsion-free cocompact lattice � <

SLn(R), constructed as a congruence subgroup of the explicit example in Sect. 3.1, and two
non-trivial homology classes α ∈ Hk(M,Q) and β ∈ Hn−1(M,Q) in the associated locally
symmetric manifold M = �\SLn(R)/SO(n) where k = dim(M)− rank(M) = n(n−1)/2,
such that

(1) α is represented by a totally geodesic submanifold H covered by SLn−1(R)/SO(n −
1) × R,

(2) β is represented by a flat (n − 1)-torus T , and
(3) the intersection number i(H , T ) �= 0.

This immediately implies that theGromovnormof the homology classα is zero.Therefore,
we obtain the following corollary.

Corollary 1.2 For every integer n ≥ 3, there exists a torsion-free cocompact lattice � <

SLn(R), and a nontrivial homology class α ∈ Hk(M,R) in the associated locally symmetric
manifold M = �\SLn(R)/SO(n) where k = dim(M) − rank(M) = n(n − 1)/2, such that
the Gromov norm ||α||1 = 0. Equivalently, the comparison map Hk

b (�,R) → Hk(�,R) is
not surjective in degree k = n(n − 1)/2.

Our construction and proof are very similar to the general approach of the SLn(Z) case in
the paper of Avramidi–Nguy ˜̂en-Phan [2], and their simplified proof in [1]. For the purpose
of making � cocompact, we need to pass onto a number field, and the resulting extra number
theoretic complexity makes the proof more difficult. Besides, geometric cycles in other type
of symmetric spaces are constructed in [17, 19] via different methods.

Organization of the paper

In Sect. 2, we provide some results in number theory focusing on the number field Q[ 4
√
2]

whichwill be used later in the proof.We give in Sect. 3 the explicit constructions of the lattices
as well as the homology cycles, we also describe the intersections of the cycles. In Sect. 4,
we investigate further the intersections under congruence covers and prove Theorem 1.1.
In the last Sect. 5, we discuss the applications to the study of Gromov norm and bounded
cohomology.
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2 Preliminary

In this section, we give a brief introduction to some basic knowledge of algebraic number
theory that will be used later in our proofs. Since we only focus on the field Q[ 4

√
2], most

of the arguments become rather elementary and tedious. We suggest the readers who are
familiar with the contents skip ahead to the next section and check back later when they are
actually used.

Rings of integers

A subfield L ⊂ C is called a number field if it is a finite extension ofQ. In this paper, we are
mainly concerned with the case L = Q[ 4

√
2]. Let O ⊂ C be the set of all algebraic integers,

that is, the set of roots of monic polynomials in integer coefficients. We denoteOL = O∩ L
the ring of integers in L .

Lemma 2.1 [7,Theorem 3.1] The ring of integers of Q[ 4
√
2] is Z[ 4

√
2].

Units

An element ofOL is called a unit if it has a multiplicative inverse. Denote U the set of units in
OL . The Dirichlet’s unit theorem states that the group of units U ⊂ OL is finitely generated
and the rank is equal to r1 + r2 − 1, where r1 is the number of real embeddings and r2 is
the number of conjugate pairs of complex embeddings of L into C. Now if we restrict our
attention to the case L = Q[ 4

√
2], and denote τ the Galois automorphism that sends 4

√
2 to

− 4
√
2, then U has rank two, and the following subset of units

U0 = {u ∈ U | τ(u) · u = 1}
is rank one, which can be explicitly given by the following lemma.

Lemma 2.2 We have U0 = {±uk0 | k ∈ Z}, where u0 = (3 + 2
√
2) + (2 + 2

√
2) 4

√
2.

Proof First, we can check τ(u0) · u0 = 1, so u0 is a unit. This implies {±uk0 | k ∈ Z} ⊂ U0.
Secondly,

√
2− 1 is an element of infinite order in U which does not satisfy τ(u) · u = 1, so

the rank of U0 must be 1. Notice that the only torsion elements in U (hence also in U0) are
±1, so it remains to show u0 is a primitive generator, that is, not a power of any elements in
U0.

Assume not, there exists v ∈ U0, and an integer k > 1 such that u0 = vk . By possibly
switching the sign of v, we may assume v > 0, so we have 1 < v < u0. According to
Lemma 2.1, we can write v = (α1 + β1

√
2) + (α2 + β2

√
2) 4

√
2 where α1, α2, β1, β2 ∈ Z,

the assumption τ(v) · v = 1 now gives

(α1 + β1
√
2)2 − (α2 + β2

√
2)2

√
2 = 1.

Apply the Galois automorphism σ : √
2 → −√

2 on the above equation, we obtain

(α1 − β1
√
2)2 + (α2 − β2

√
2)2

√
2 = 1.

Thus |α1 − β1
√
2| ≤ 1 and |α2 − β2

√
2| < 1. If β2 = 0, then α2 = 0. It follows that

α1 − β1
√
2 = ±1, which forces β1 = 0 and α1 = ±1, a contradiction. Similarly if β1 = 0,

it forces α1 = ±1 and α2 = β2 = 0, which is again impossible. This implies that α1, β1
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must have the same sign and so do α2, β2. Furthermore, v > 1 implies 0 < τ(v) < 1 < v,
so α1, α2, β1, β2 > 0. Now since α1, α2, β1, β2 are all positive integers, the least possible v

is (1+ √
2) + (1+ √

2) 4
√
2 ≈ 5.285 which contradicts with 12 > u0 = vk ≥ v2. Therefore,

u0 is a primitive generator of U0, which completes the proof. ��

The Grunwald–Wang theorem

The (Hasse) local-global principle plays a very important role in number theory. The idea
comes down to that finding rational solutions for certain equations is sometimes equivalent
to finding p-adic solutions for all prime p. The Grunwald–Wang theorem is a version of such
principle for the special family of polynomial equations xm = a.

Let L be a number field, we denote by ζr a primitive 2r -th root of unity, and ηr = ζr +ζ−1
r .

Let s ≥ 2 be the integer such that ηs ∈ L but ηs+1 /∈ L .

Theorem 2.3 (Grunwald–Wang). [3,Chapter 10]Letm bean integer, S beafinite set of primes
and P(m, S) the group of all a ∈ L such that a ∈ Lm

p for all p /∈ S. Then P(m, S) = Lm

except when the following conditions are all satisfied (which is referred to as the special
case):

(1) −1, 2 + ηs and −(2 + ηs) are non-squares in L,
(2) m = 2tm′ where m′ is odd and t > s.
(3) S0 ⊂ S, where S0 is the set of primes p|2where−1, 2+ηs and−(2+ηs) are non-squares

in L p.

In the case L = Q[ 4
√
2], we will see in the following lemma that the exceptional set S0 is

non-empty, therefore the special case must have S �= ∅.
Lemma 2.4 If L = Q[ 4

√
2], then 4

√
2 ∈ S0.

Proof It is clear that s = 3 and ηs = √
2. Sowe need to show−1,±(2+√

2) are non-squares
in the p-adic field L 4√2. As −1,±(2 + √

2) are all p-adic integers, it suffices to show they

are not the square of any element in O 4√2 where O = Z[ 4
√
2]. Note that O 4√2 by definition

is the inverse limit of the rings O/(
4
√
2)k , so if a 4

√
2-adic integer is a square in O 4√2, then

it is also a square in O/(
4
√
2)k for any natural number k, and in particular it is a square in

O/(4) ∼= Z[x]/(x4 − 2, 4). We show that −1,±(2+ √
2) are non-squares inO/(4) thus the

lemma follows.
Take the mod 2 ring homomorphism ϕ : Z[x]/(x4 − 2, 4) → Z[x]/(x4, 2), and we put

a bar to indicate the image under this homomorphism (for example, ᾱ(x) = ϕ(α(x))). We
can further identify the image Z[x]/(x4, 2) as the set of integral polynomials with {0, 1}-
coefficient (together with the relation x4 = 0), which can be viewed as a subset inZ[x]/(x4−
2, 4). We claim that α(x) = β2(x) in Z[x]/(x4 − 2, 4) if and only if α(x) = β̄2(x) in
Z[x]/(x4 −2, 4). Indeed, ker(ϕ) = (2) implies that β(x) and β̄(x) differs by 2δ(x) for some
δ(x) ∈ Z[x]/(x4−2, 4). So we can check β2(x) = (β̄(x)+2δ(x))2 = β̄2(x)+4β̄(x)δ(x)+
4δ2(x) = β̄2(x) in Z[x]/(x4 − 2, 4). Use this fact, we can deduce to much less possibilities
in checking a square.

If −1 were a square β2
1 (x) in Z[x]/(x4 − 2, 4), then under the image of ϕ, 1 = β̄2

1 (x) in
Z[x]/(x4, 2). Hence the only possibilities for β̄1(x) are 1, 1+ x2, 1+ x2 + x3. But none of
the squares is −1 in Z[x]/(x4 − 2, 4). Similarly, if ±(2+ x2) (which represents ±(2+ √

2)
in O/(4)) were a square β2

2 (x) in Z[x]/(x4 − 2, 4), then under the image of ϕ, x2 = β̄2
2 (x)
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in Z[x]/(x4, 2). Hence the only possibilities for β̄2(x) are x, x + x2, x + x2 + x3, but again
none of the squares is ±(2 + x2) in Z[x]/(x4 − 2, 4). This shows that −1,±(2 + √

2) are
non-squares in O/(4) and therefore they are non-squares in L 4√2. ��

Nowwe apply the Grunwald–Wang theorem to the case L = Q[ 4
√
2] and S = ∅, and from

the above lemma we see that the exceptional condition (3) is not satisfied. Thus we have
P(m, S) = Lm for any m. In other words, the following corollary holds. We will only use
this version in the proof later.

Corollary 2.5 Let L = Q[ 4
√
2], and m be any positive integer. If a is an element in L such

that the equation xm = a has a solution in L p for every prime ideal p, then xm = a also
has a solution in L.

3 The constructions

We start with the following explicit algebraic construction of cocompact lattices in SLn(R).
They are higher dimensional versions of [16,Example 6.3.2], which is also discussed in much
details in [4].

3.1 A cocompact lattice

Let L = Q[ 4
√
2] be the number field and OL = Z[ 4

√
2] be the ring of integers of L . Denote

τ : L → L the field automorphism that sends 4
√
2 �→ − 4

√
2. Set the quadratic form

Dn =

⎛
⎜⎜⎜⎝

−1 √
2

. . . √
2

⎞
⎟⎟⎟⎠ .

Then the following subgroup

�n : = {g ∈ SLn(OL) | τ(gT )Dng = Dn}
is a cocompact lattice in SLn(R) [4,Corollary 2.18].

Congruence subgroups

By Selberg’s lemma, there exists a torsion free, finite index subgroup � < �n , which corre-
sponds to a closed locally symmetric manifold M = �\Xn , where Xn = SLn(R)/SO(n) is
the associated symmetric space.

Arithmetic lattices have many finite index subgroups that inherits certain algebraic struc-
tures. Indeed, for any prime ideal p ⊂ OL and for any positive integer k, we have the natural
“mod pk” homomorphism

ϕpk : SLn(OL) −→ SLn(OL/pk)

where the target is a finite group. So by the group isomorphism theorems, the group

�(pk) = � ∩ Ker(ϕpk )
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is a finite index normal subgroup of �. Geometrically, the corresponding closed manifold

M ′ = �(pk)\Xn

is a finite degree cover of M .

3.2 The cycles

We are going to construct two cycles on M which are represented by two closed totally
geodesic submanifolds in the complementary dimensions.

Flats and tori

The diagonal matrices in SLn(R) corresponds to a totally geodesic maximal flat F ⊂ Xn of
dimension (n − 1). Let u0 ∈ OL be the unit as in Lemma 2.2 which satisfies τ(u0) · u0 = 1.
Then it follows that the subset

A′
n =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

⎛
⎜⎜⎜⎜⎝
uk10

uk20
. . .

ukn0

⎞
⎟⎟⎟⎟⎠ :

n∑
i=1

ki = 0, ki ∈ Z

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

is a subgroup of �n that is isomorphic to Zn−1. Intersecting with �, we obtain a finite index
subgroup An < A′

n which is also abstractly isomorphic to Z
n−1. It acts cocompactly by

isometry on the flat F , thus passing down to the quotient, the natural inclusion F ⊂ Xn

induces a totally geodesic embedding An\F ⊂ �\Xn . In particular, the image is a closed
isometrically embedded (n − 1)-torus in �\Xn , which we denote by T .

Totally geodesic Xn−1 × R

The following block diagonal matrices⎛
⎝ 1

t
· SLn−1(R) 0

0 t (n−1)

⎞
⎠ , t > 0

form a Lie subgroup in SLn(R) which is isomorphic to SLn−1(R) × R. It corresponds to a
totally geodesic submanifold Xn−1×R ⊂ Xn whose dimension equals dim(Xn)−rank(Xn).
It is clear that the following subset

B ′
n =

⎧⎨
⎩

⎛
⎝ 1

uk0
· �n−1 0

0 uk(n−1)
0

⎞
⎠ , k ∈ Z

⎫⎬
⎭

is a subgroup of �n which is isomorphic to �n−1 ×Z. Intersecting with �, we obtain a finite
index subgroup Bn < B ′

n , which also acts cocompactly by isometry on Xn−1 × R. Thus
the inclusion Xn−1 × R ⊂ Xn induces on the quotient a totally geodesic embedding from
Bn\(Xn−1 × R) to �\Xn . The image is an isometric copy of N × S1 where N is a closed
locally symmetric manifold modeled on SLn−1(R). We denote the image by H .
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Fig. 1 Transverse intersection on the universal cover

3.3 Transverse intersections

One way to show a submanifold H on M represents a non-trivial homology class is to find a
transverse submanifold T of the complementary dimension, such that the intersection number
i(H , T ) �= 0.

On the universal cover

As a first step, we would like to realize this in the universal cover so that the two lifts H̃
and T̃ intersect transversely. We have seen in Section 3.2 two totally geodesic copies F and
Xn−1 × R whose dimensions add up to dim(Xn), but according to the construction, F is
contained in Xn−1 ×R. We are going to take a suitable rational conjugate F ′ of F so that F ′
intersects Xn−1 × R transversely, as indicated by the following picture.

To see this, we fix a basepoint p ∈ Xn that corresponds to eK ∈ G/K . The Cartan
decomposition g = k+p identifies the tangent space TpXn with p = {A ∈ sln(R) : At = A}.
Denote a and p1 the tangent subspaces of Tp(F) and Tp(Xn−1×R) as described above. Then
a consists of diagonal matrices with trace zero, and p1 = {A ∈ p : [A, u] = 0} where

u =
(
I (n−1) 0
0 −(n − 1)

)

is a tangent vector corresponding to the singularR-factor. We show that we can always move
a off p1 by an isometry in K .

Lemma 3.1 There exists k ∈ K such that Ad(k)a ∩ p1 = 0.

Proof We instead show there exists k ∈ K such that Ad(k)p1 ∩ a = 0. It is clear that

Ad(k)p1 = {A ∈ p : [A, kuk−1] = 0}.
Suppose there is a non-zero matrix v ∈ Ad(k)p1 ∩ a. Since v is diagonal of zero trace, any
matrix that commuteswith v need to have some zero on the off-diagonal entries.We show that
we can choose a suitable k ∈ SO(n) such that kuk−1 has no zero entry on the off-diagonal,
which leads to a contradiction hence Ad(k)p1 ∩ a = 0. We write k as a block matrix

k =
(
O11 O12

O21 O22

)
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Fig. 2 Double coset

so that O11 is an (n − 1) × (n − 1) matrix and O22 is a scalar. We compute

kuk−1 = k I (n)k−1 − k

(
0(n−1) 0

0 n

)
k−1 =

(
I − nO12Ot

12 −nO22O12

−nO22Ot
12 1 − nO2

22

)

Thus we just need to pick any orthogonal matrix k whose last column has no zero entry, and
this certainly can be done. ��

If we apply the exponential map at p to Ad(k)a and p1, we obtain two totally geodesic
submanifolds F ′ and Xn−1×R that intersect transversely at p,where F ′ = kF . The arithmetic
construction of � arises from the rational structure of G, and by [4,Corollary 2.18], we see
that the subgroup

GQ = {g ∈ SLn(L) | τ(gT )Dng = Dn}
corresponds to the rational points of SLn(R)×SU(n,R), thus is dense in SLn(R). Since the
result gF intersects Xn−1 ×R transversely is an open condition for g ∈ G, by the denseness
there exists g0 ∈ GQ such that g0F and Xn−1 × R intersect transversely. Moreover, since
g0 is rational, we see that g0�g

−1
0 ∩ � is a finite index subgroup of �. This implies that

g0Ang
−1
0 ∩ � is a finite index subgroup of g0Ang

−1
0 , thus isomorphic to Z

n−1. We denote
An = g0Ang

−1
0 ∩�, and it acts cocompactly on F ′. The quotient manifold An\F ′ is a totally

geodesic embedded (n − 1)-torus in �\Xn , which we denote by T ′.

On the quotient manifold

We have now obtained two totally geodesic submanifolds T ′ and H on M , such that they
arise as the quotient of two transverse intersecting submanifolds F ′ and Xn−1×R on Xn . For
simplicity, we still denote T ′, F ′ by T , F . We denote the intersecting of F ′ and Xn−1 × R

by x̃0.
Passing to the quotient, we see that T and H intersect at least at one point x0 transversely,

but T and H might have other intersections (which we call extra intersections) that might
not even be transverse. Following [2], we will use a double coset system to describe them.

Since both T and H are totally geodesic, the connected components of T ∩ H are also
closed totally geodesic submanifolds. For each intersection x �= x0, we can make a loop at x0
by first connecting x0 to x along H and then travel back from x to x0 along T . This gives an
element γ ∈ π1(M, x0) ∼= �. But for a different choice of path connecting x0 to x along H ,
they differ by a left multiplication of an element in π1(x0, H), and similarly, for a different
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choice of path connecting back from x to x0 along T , they differ by a right multiplication of
an element in π1(x0, T ). Therefore, for each intersection x , it corresponds to a double coset

π1(H) · γ · π1(T ),

which we simply denote by [γ ]. It is clear that, if x, x ′ belong to the same connected compo-
nent of T ∩ H , then the corresponding double cosets are the same. On the other hand, if [γ ]
represents the connected component of an intersection x , then γ T̃ ∩ H̃ projects to x . Thus,
if x, x ′ belong to different components, then the corresponding double cosets are different.

Lemma 3.2 There are only finitely many connected components of T ∩ H.

Proof Since both H and T are compact, there exists a constant D > 0 that diam(H) < D
and diam(T ) < D. Therefore, in view of the above construction, for any extra intersection x ,
we can always choose a representing loop such that the two connecting paths between x0 and
x are both < D/2, so the total length of the representing loop is < D. Thus, any connected
component of T ∩ H corresponds to a double coset [γ ] where γ can be chosen in a finite set
{γ : d(x̃0, γ x̃0) < D}. This completes the proof. ��

3.4 Sign of intersections

Extra intersections of T and H might not be transverse, and even if they do, they might take
different sign which can possibly add up to a zero intersection number. We will need the
following criterion which assures that the intersection is transverse and takes the same sign
as the base intersection x0.

Lemma 3.3 [2,Claim in Section 8] (See also [1,Lemma 2]) If an extra intersection x has
a representative (thus for all representatives) γ which can be written as a product of two
elements in SLn(R),

γ = a · b
such that a preserves H̃ and its orientation and b preserves T̃ and its orientation, then x is
a transverse intersection and takes the same sign as x0.

Proof For the completeness, we include a proof here. Lifting to the universal cover, the
intersection γ T̃ ∩ H̃ is a lift of x , which we denote by x̃ . Since γ = ab, and a, b preserves
H̃ , T̃ respectively, we can write

x̃ = γ T̃ ∩ H̃ = abT̃ ∩ H̃ = a(T̃ ∩ a−1 H̃) = a(T̃ ∩ H̃) = a · x̃0.
Thus, a sends the local intersecting configuration T̃ ∩ H̃ around x̃0 orientation preserving
isometrically to γ T̃ ∩ H̃ around x̃ . In particular, x̃ is a transverse intersection and takes the
same sign as x̃0. The same holds when projects down to M . ��

3.5 Interpreting as linear equations

If [γ ] represents an extra intersection, we are interested to know when the criterion of
Lemma 3.3 holds.

Lemma 3.4 The criterion of Lemma 3.3 holds if and only if the following equations can be
solved for a, b ∈ Matn(R),
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(1) γ = a · b,
(2) b · t = t · b,
(3) a · u = u · a,
(4) det a = 1,
(5) a preserves the orientation of H̃ ,

where t ∈ Isom(T̃ ) is any isometry with distinct eigenvalues, and u = diag(1, . . . , 1,−(n −
1)) as in Sect. 3.3.

Proof Notice that (2) holds if and only if b preserves T̃ , and (3) holds if and only if a
preserves H̃ , which is also equivalent to a being certain block diagonal matrix. Thus, it is
clear the above equations are necessary. To see they are also sufficient, we need to show
det b = 1 and b preserves the orientation of T̃ . Since γ ∈ � < SLn(R), (1) and (4) imply
det b = 1. Furthermore, det b = 1 and (2) imply b is orientation preserving on T̃ . ��

Now if we ignore for the moment (4) and (5), and choose t as a rational matrix, then the
above equations become a system of linear equations (on variable a) whose coefficients are
in L = Q[ 4

√
2], after rewriting in the following way:⎧⎪⎨

⎪⎩
γ = a · b
b · t = t · b
a · u = u · a

�⇒
{
a · t = γ tγ −1 · a
a · u = u · a (∗)

4 Proof of theorem

In this section, we prove Theorem 1.1. The approach is very similar to [1]. Following the
notation in Sect. 3, let M = �\Xn be the closed locally symmetric manifold and T , H ⊂
M be the closed submanifolds that we constructed. Although H might represent a trivial
homology class in M , we want to show that under a sufficiently large degree cover M ′ of M ,
the lift of H will represent a non-trivial class in M ′. As a first step, we need to understand
how extra intersections behave under congruence covers.

4.1 Extra intersections under congruence covers

For each prime ideal p ⊂ OL , and positive integer k, we denote the congruence subgroup
�(pk) = � ∩ ker ϕpk , where ϕpk is the (mod pk)-homomorphism as in Sect. 3.1. For any
extra intersection [γ ] = π1(H) · γ · π1(T ), by passing onto the (mod pk) congruence cover,
either the intersection gets removed, which then we do not need to worry about anymore, or
the intersection remains, in which case it has to satisfy certain algebraic constraints.

Assume an extra intersection x remains under a (mod pk) congruence cover M ′ of M ,
then there is a lift T ′ of T and H ′ of H such that there is an intersection of T ′ and H ′ in M ′
that projects to x . This means [γ ] has a representative in π1(M ′) ∼= �(pk). Therefore, there
exist a ∈ π1(H) and b ∈ π1(T ) such that

a−1 · γ · b−1 ∈ π1(M
′) < ker(ϕpk ),

which implies that γ = a · b (mod pk). Since an element a ∈ π1(H) commutes with u, and
an element b ∈ π1(T ) commutes with t . We obtain the following proposition.
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Lemma 4.1 If an extra intersection [γ ] remains under a (mod pk) congruence cover, then
the linear system of equations (∗) {

a · t = γ tγ −1 · a
a · u = u · a

has a (mod pk) solution.

4.2 Solving the linear system

However, some extra intersections might survive all finite covers, which we call left over
intersections. Thus by the above lemma, if [γ ] represents a left over intersection, then for all
prime ideal p and any k ∈ Z

+, the linear system of equations (∗){
a · t = γ tγ −1 · a
a · u = u · a

has a (mod pk) solution ak . Fix p and let k → ∞, we obtain a p-adic solution ap =
limk→∞ ak in the p-adic completion L p of L . Since each ak ∈ SLn(OL), we conclude that
ap ∈ SLn(Z[ 4

√
2]p). Moreover, the linear system of equations is defined over L , so if V is

the solution space over the field L , then the solution space over L p is exactly V ⊗ L p . In
particular, the fact that the linear system has a solution ap ∈ L p implies that the system
is consistent, hence it also has a solution over the base field L . Since det ap = 1 �= 0 and
because L is dense in L p , we can choose the solution over L to be invertible.

Lemma 4.2 If [γ ] represents a left over intersection, then the solution space to the linear
system of equations {

a · t = γ tγ −1 · a
a · u = u · a

is 1-dimensional.

Proof By the above discussion, we know that the solution space is at least 1-dimensional,
which is spanned by an invertible matrix a ∈ GLn(L). Suppose there is another solution
ā ∈ Matn(L), then by substituting a, ā into the equations, we obtain{

(a−1ā) · t = t · (a−1ā)

(a−1ā) · u = u · (a−1ā)
,

or equivalently, (a−1ā) ∈ Z(t)∩ Z(u), where the centralizers are taken in Matn(L). Now we
make the field extension L ⊂ R, and consider the linear system over the real numbers. Since
Z(t) ∩ Z(u) is a linear subspace (considered over R) containing at least a one dimensional
subspace spanned by I , if it has more than one dimension, then we can find a matrix s,
linearly independent with I , such that s commutes with both t and u. Then there is a curve
of isometries gε ∈ SLn(R) around I given by

gε = I + εs
n
√
det(I + εs)

, |ε| < ε0,

where ε0 is a sufficiently small real number such that det(I + εs) stays positive. However,
any isometry g ∈ SLn(R) which commutes with both t and u has to preserve both T̃ and
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H̃ hence also their intersection x̃0, so it must be in StabG x̃0 ∼= SO(n). Since there is only
finitely many elements in K that commutes with t (because t is in the regular direction),
the continuous family gε must be constant, hence s is a scalar multiple of I , which is a
contradiction. This implies Z(t) ∩ Z(u) is one dimensional spanned by I , and that a, ā can
only differ by a scalar. In other words, the solution space is one dimensional. ��

4.3 Finishing the proof

By Lemma 3.2, there are only finitely many connected components of T ∩ H . For each
component, either it goes away when lifting to a finite cover, or it is a left over intersection.
Thuswhen passing to a sufficiently large degree coverM ′ ofM , only the left over intersections
remain in T ′ ∩H ′. To obtain i(T ′, H ′) �= 0, it is sufficient to show the following proposition.

Proposition 4.3 If [γ ] represents a left over intersection, then it is transverse and takes the
same sign as base intersection x0.

Proof In view of Lemma 3.3 and 3.4 , we just need to find a solution a, b ∈ Matn(R)

satisfying (1)–(5) in Lemma 3.4. From Sect. 4.2, we already have a solution a ∈ Matn(L)

with non-zero determinant, thus we can solve for b = a−1 · γ and (1)–(3) follows. The rest
of the proof is to modify a to satisfy (4) and (5).

For (4), we compare the rational solution a ∈ Matn(L) with the p-adic solutions ap ∈
SLn(Z[ 4

√
2]p) for each prime ideals p. Since det a �= 0, by Lemma 4.2 there exists a non-

zero cp ∈ L p such that a = cp · ap . Take the determinant on both sides, we obtain det a =
cnp det ap = cnp , and this holds for all prime ideal p. It follows that the equation xn = det a is
solved locally in L p for all p, thus by Corollary 2.5, it is also solved globally in L . In other
words, there exists a non-zero c ∈ L such that cn = det a. Therefore, if we set ā = a/c, and
correspondingly b̄ = c · b, then ā, b̄ satisfies (1)–(4).

We need to show ā also satisfies (5). Note that (3) implies that ā is a block diagonal matrix
whose lower-right entry forms a single block. To check whether ā is orientation preserving
on H̃ , we need the following lemma.

Lemma 4.4 For the block diagonal matrix ā, it preserves the orientation of H̃ = Xn−1 × R

exactly when either n is even, or n is odd and the lower-right entry of ā is positive.

Proof we write

ā =
(
A0 0
0 z

)
.

If n is even, then ā and −ā acts the same on H̃ hence we can always assume z > 0, and
consequently det A0 > 0 since det A0 · z = 1. Then ā is line homotopic to

ā′ =
(
z

1
n−1 A0 0
0 1

)

inside Isom H̃ , where z
1

n−1 A0 ∈ SLn−1(R) is orientation preserving on Xn−1. Thus ā′ is
orientation preserving on H̃ . Since under continuous variations the orientation does not
change, we conclude ā is also orientation preserving on H̃ .

Similarly, if n is odd, and z > 0, the upper left block of ā also has positive determinant.
Hence by the same argument in the above, we have ā is orientation preserving. If n is odd
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and z < 0, then it differs from an orientation preserving isometry by⎛
⎝−1

I (n−2)

−1

⎞
⎠ .

One can check that the adjoint action of the above matrix on H̃ is orientation reversing. This
implies that in this case ā is orientation reversing. ��

Now we continue with the proof of Theorem 1.1. We have ā = a/c = (cp/c) · ap . Take
determinant on both sides, we obtain (cp/c)n = 1. Thus cp/c is a p-adic n-th root of unity
and in particular it is a p-adic integer, that is, cp/c ∈ Z[ 4

√
2]p . We denote ωp = cp/c, and

we have ā = ωp · ap ∈ SLn(Z[ 4
√
2]p) ∩ SLn(L) = SLn(OL) so that the lower-right entry

z ∈ Z[ 4
√
2]. According to Lemma 4.4, we need to show z > 0 in the case n is odd. So from

now on, we assume n is odd.
First, we claim z is a unit in L which satisfies τ(z)z = 1. Since ap arises as a p-adic

limit of ak , it is also block diagonal. We denote the lower-right entry of each ak by zk ,
and the lower-right entry of ap by z p . Since each ak are elements in �, by construction,
we have τ(zk)zk = 1. Thus passing to the limit, we have τ(z p)z p = 1. Comparing the
lower-right entries of equation ā = ωp · ap , we have z = ωp · z p . So we compute τ(z)z =
τ(ωp)ωpτ(z p)z p = τ(ωp)ωp ∈ OL since z ∈ OL . But τ(ωp)ωp is also a p-adic n-th root
of unity, so it must be ±1. Because n is odd, it can only be +1 and therefore, τ(z)z = 1.

Next, we prove z > 0. By Lemma 2.2, we have z = ±um0 for some integer m. Recall
that ap is a p-adic limit of ak ∈ SLn(OL), and since each ak preserves the orientation of
H̃ , by Lemma 4.4, the lower-right entry of each ak is positive hence zk has the form +umk

0 .
Therefore,

z = lim
k→∞(ωp · umk

0 ).

Suppose for the purpose of contradiction that z = −um0 , then we have

−1 = lim
k→∞(ωp · umk−m

0 ).

Taking the n-th power on both side (and note n is odd), we obtain

−1 = lim
k→∞ un(mk−m)

0 .

Note that the above equation is in the sense of p-adic limit. In particular, when p = 4
√
2 it

means that −1 is the 4
√
2-adic limit of a sequence of powers of u0. By possibly passing to a

subsequence and possibly raising to power −1 on both sides, we can assume it is a sequence
of positive powers of u0. We claim this is impossible.

Assume on the contrary that −1 = limi→∞ uki0 for some positive sequence ki under the
4
√
2-adic metric. Since 4 = (

4
√
2)8, we have −1 = limi→∞ uki0 (mod 4). However, by direct

computations we have

u20 = 1 (mod 4), u0 �= −1(mod 4).

Thus uk0 �= −1 (mod 4) for any integer k. In particular −1 = limi→∞ uki0 (mod 4) cannot
hold. The contradiction shows that z can only be of the form +um0 , so z > 0.

We have then verified ā, b̄ satisfy all conditions (1)–(5) in Lemma 3.4, and therefore by
Lemma 3.3, the left over intersection of [γ ] is transverse and has the same sign as the base
intersection. This completes the proof. ��
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5 Gromov norm and bounded cohomology

5.1 Gromov norm

We have constructed above a closed locally symmetric manifold M modeled on SLn(R)/

SO(n), and a homology class α ∈ Hk(M,R) represented by a totally geodesic submanifold
which has a circle factor. Thus it is not hard to see that α has zero Gromov norm, and this
proves Corollary 1.2.

Proposition 5.1 If α ∈ Hk(M,R) is represented by a submanifold N × S1 ⊂ M, then
||α||1 = 0.

Proof Let i : N × S1 → M be the inclusion map, then by the properties of Gromov norm
[11], we have

||α||1 = ||i∗([N × S1])||1 ≤ ||N × S1|| ≤ C ||N || · ||S1|| = 0.

��

5.2 Dupont’s conjecture

Dual to the �1 normon thehomology, one can rephrase results onGromovnormusingbounded
cohomology. By the duality principle [11] (See also [6,Proposition F.2.2]), if ||α|| = 0, then
any cohomology class ω ∈ Hk(M,R) satisfying 〈ω, α〉 �= 0 does not have bounded repre-
sentatives. Thus, producing a non-trivial zero Gromov norm homology class is equivalent
to the non-surjectivity of the comparison map in the same degree. On the other hand, it is
conjectured in [10] that all G-invariant forms on X (arising from the continuous cohomology
H∗
c (G,R) via the van Est isomorphism) have bounded representatives.

Conjecture (Dupont) If G is a connected, non-compact, semi-simple Lie group with finite
center, then the comparison map

c∗
G : H∗

b,c(G,R) → H∗
c (G,R)

is always surjective.

Remark Monod further conjectured [15] that this is an isomorphism.

For any cocompact lattice � < G, we have the following commutative diagram

Hk
b,c(G,R) Hk

b (�,R)

Hk
c (G,R) Hk(�,R)

i∗b

ckG ck�
i∗

where i∗, i∗b are the natural homomorphisms induced by the inclusion i : � → G, and
ckG , ck� are the comparison maps. The van Est isomorphism [20] states that the continuous
cohomology H∗

c (G,R) is isomorphic to the relative Lie algebra cohomology H∗(g, k,R),
and any such class can be identifiedwith a K -invariant alternating form on g/k ∼= �∗(TpX)K .
By left translation, it further extends to a G-invariant form on the symmetric space G/K .
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Therefore, under this identification i∗ can be viewed as the restriction map from the G-
invariant forms to the �-invariant forms on G/K .

Now specify G = SLn(R), � the cocompact lattice as in Corollary 1.2, and α ∈ Hk(�)

the non-trivial homology class with zero Gromov norm. If a class η ∈ Hk
c (G,R) satisfies

〈i∗(η), α〉 �= 0, then it is not in the image of ck� , hence neither is in the image of ck� ◦ i∗b =
i∗ ◦ ckG . This implies that ckG is not surjective, giving a counterexample to the Dupont’s
conjecture. In other words, if the Dupont’s conjecture is true, then ||α||1 = 0 should imply∫
α
i∗(η) = 0. The following proposition confirms this, so our construction of zero Gromov

norm class does not violate with Dupont’s conjecture.

Proposition 5.2 Let G = SLn(R), � be any cocompact lattice in G, Xn = G/K and
Xn−1 be the totally geodesic submanifold corresponding to the block diagonal Lie subgroup
SLn−1(R) × R. If η is any G-invariant differential k-form on Xn, where k = dim(Xn) −
rank(Xn), and α ∈ Hk(�\Xn) is any class represented by a totally geodesic submanifold
covered by Xn−1 × R, then ∫

α

η = 0.

Proof Since the integral is homogeneous, it is sufficient to show that at any basepoint p, the
evaluation of a K -invariant form η on the tangent subspace Tp(Xn−1×R) ⊂ TpXn is always
zero.

We identify TpXn with p using the Cartan decomposition g ∼= k + p at p, and denote
θ : g → g the Cartan involution. Fix a maximal abelian subgroup a in p (unique up to
conjugate), under the root space decomposition, we have g ∼= g0 + ∑

λ∈� gλ where �

denotes the set of all roots of g. Since θ sends gλ to g−λ, if we denote kλ = (I − θ)gλ ⊂ k

and pλ = (I + θ)gλ ⊂ p, then we obtain the root space decompositions for k and p:
k ∼= k0 + ∑

λ∈�+ kλ and p ∼= a + ∑
λ∈�+ pλ, where �+ is the set of all positive roots and

the latter splits orthogonally with respect to the G-invariant metric (Killing form) on Xn .
In the case g = sln(R), the above decompositions have the following explicit forms.

Denote Ei j ∈ g the n × n matrix whose (i, j)-entry is 1 and 0 elsewhere. Choose the
maximal abelian subgroup a ⊂ p to be the subset of diagonal matrices, then the roots of g
are exactly dual to {Eii − E j j } for each i �= j . Under the root space decompositions, the
invariant spaces of the root λ = E∗

i i − E∗
j j are given by the one dimensional spaces

gλ = 〈Ei j 〉, kλ = 〈Ei j − E ji 〉, pλ = 〈Ei j + E ji 〉,
and for the convenience, we denote by gi j , ki j and pi j respectively. Note also that k0 = 0 and
g0 = a.

We pick an orthonormal basis e1, . . . , en−1 in a and ei j the normalized unit vector of
Ei j + E ji in pi j . So the collection of {ei |n−1

i=1 , ei j |1≤i< j≤n} form an orthonormal basis in p.
Now the tangent space of the totally geodesic submanifold Xn−1 ×R is spanned by {a, pi j }
where 1 ≤ i < j < n, so its normal space is spanned by {ein |n−1

i=1 }. For any alternating
k-form η on Tp(Xn−1 × R), we can write in terms of the k-wedge of the orthonormal basis,
and the evaluation of η on Tp(Xn−1 × R) is (up to a sign) the coefficient in front of

e∗
1 ∧ · · · ∧ e∗

n−1 ∧
∧

1≤i< j<n

e∗
i j ,

which is the same as the evaluation of �η (Hodge star operator) on the normal space of
Tp(Xn−1 × R) ⊂ TpXn . Our goal is to show for any K -invariant form η this value is zero.
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Since the Hodge star operator sends K -invariant forms to K -invariant forms, it is equivalent
to show that for any K -invariant (n−1)-form, the coefficient in front of e∗

1n ∧· · ·∧e∗
(n−1)n is

zero. Since �η isAd(K )-invariant, it is ad(k)-vanishing. In particular, for u = E1n−En1 ∈ k1n
we have ad(u)(�η) = 0. However, for the linear endomorphism ad(u) : ∧n−1 p → ∧n−1 p,
there is an invariant 2-dimensional subspace V0 spanned by

{e∗
1n ∧ e∗

2n ∧ · · · ∧ e∗
(n−1)n, H

∗ ∧ e∗
12 ∧ · · · ∧ e∗

1(n−1)}
where H = E11 − Enn . This is because by the Lie algebra computations,

ad(u)(ein) = e1i , ad(u)(e1i ) = −ein, 1 < i < n,

and

ad(u)(e1n) = a · H , ad(u)(H) = b · e1n, a, b �= 0,

where a, b depends on the scale of themetric. Thus the restriction of the linear endomorphism
ad(u)|V0 has matrix form (

0 a
(−1)nb 0

)

which is non-singular. Therefore, ad(u)(�η) = 0 implies that the component of �η on V0
must be zero, and in particular the coefficient in front of e∗

1n ∧ · · · ∧ e∗
(n−1)n is zero. This

completes the proof. ��
Remark It is pointed out by the anonymous referee that one can use the stability results to
show the map (induced by the inclusion)

Hk
c (SLn−1(R) × R) → Hk

c (SLn(R))

is zero in degree k = dim(Xn) − rank(Xn). The proposition then follows immediately. Our
proof is rather an explicit computation, which might be of independent interest.
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